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ABSTRACT

Numerical Simulation of Vibrations of Mechanical Structures

Adaku Uchendu
Department of Mathematics and Statistics, UMBC

Mathematics, BS

We develop an implementation of finite element method to simulate vibrations of mechanical
structures. Specifically, we use a 2D frame model and corresponding stiffness, mass and damping
matrices to set up a system of ordinary differential equations, which is solved in Matlab. We
also consider uncertainties in the model parameters by taking the Young’s modulus as a random
variable. We use Monte Carlo simulation, and the effect of uncertainties is studied by numerical
experiments.

Keywords: Mechanical Structures, Mass matrix, Stiffness Matrix, Damping Matrix, Finite Element
Method, Degrees of freedom (dof)
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Chapter 1

Introduction

The volume of earthquake engineering research has increased in proportion to the severity and fre-
quency of earthquakes around the world. The destruction of civil and mechanical structures caused
by these earthquakes fostered large interest in the study of earthquakes. As a result of the influx
of active researchers, development of new structures and retrofitting of already existing structures
to withstand earthquakes and wind has grown. This is where structural control design becomes
important because without it, it would be impossible to create structures capable of withstanding
earthquakes. Since during earthquakes, structures emulate the behavior of springs by their move-
ment, the structure was modeled as coupled springs.

Structural control can be defined as the effective measures put in place to ensure that a structure
is performing as it should. Structural design is the procedure by which structures are inspected for
their strength, stability and rigidity. These three qualities ensure that a structure is efficient for what
it was built for. An application of this research can be seen in the Taipei 101, an architectural beauty
in Taiwan with a gigantic sphere at the top of the building, balanced by steel cables that swings
in the reverse direction of the swaying building during an earthquake, consequently, dissipating
the energy and vibrational consequences caused by earthquakes and typhoons. In addition, it is
worth noting that the findings of this research are based on mathematical models and not real life
buildings or structures. This is for the engineers to take the results and replicate it on real life
mechanical structures in ways like the Tapiei 101.

In the article [1] the researchers use a program called FRAME, a finite element and opti-
mal structural control program. It is used to generate a dynamic finite element model of a two-
dimensional structure that acts like a mechanical structure, as a procedure to study earthquakes.
The 2-D model is simulated in MATLAB to create a moving picture of the frame. This is known
as a MATLAB movie and it shows a structure that swerves to the right and left continuously for a
given time, thus emulating a structure during an earthquake. Since the force the earthquake exerts
on a structure cannot always be fully cushioned, the whole point of this research is to at least sub-
tract some of the force to avoid collapse of buildings when force is too much. I would be using the
FRAME model in my research to emulate a structure.

Next, while conducting this research study, the first step was to derive a mathematical model
of the structure to simulate in MATLAB. Since this structure is a large system with vibrational
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properties, it was only fitting that I used differential equations and matrix algebra to model. This
will be discussed in detail in the next chapters. Thus, the next chapters will discuss the steps taken
in this research to achieve the utimate goal. Also, they will discuss the basics of mechanical vi-
brations which involves a discussion of two examples, an introduction to a Finite Element Method
application of a frame, the derivation of a more complex frame, its simulation in MATLAB the
monte carlo simulation of this frame and lastly, the conclusions obtained from all these analysis.

Finally, the ultimate goal of this research is to provide structural engineers with the mathemat-
ical model and measurements needed to make an efficient structural design to mitigate the effects
of earthquakes and wind on structures. However, it is important to note that achieving a 100%
efficient structure is nearly impossible since the exact earthquake magnitude is unknown until after
the earthquake occurs. Therefore, this work solely operates on estimations which are really good
but not perfect.



Chapter 2

Basics of Mechanical Vibrations

This chapter will discuss two examples of mechanical vibration systems. The examples to be
explored are; trajectory movie and coupled strings. The trajectory movie example captures the os-
cillation of a mechanical structure by making a moving picture in MATLAB. The, second example,
coupled strings models the motion of the spring with newton’s second law of motion and plots the
solution.

2.1 Trajectory movie
A MATLAB movie can be described as a gif or a moving picture created in MATLAB. This can
be done by generating a sequence of figures, saving it and displaying them coherently using the
appropraite fuctions which could be either VideoWriter, movie2avi, movie and some other movie
functions. A skill like this is useful in visualizing the behavior of vibrating structures such as any
mechanical vibration systems. Thus, for this exercise, the MATLAB code in [2] was modified by
adding a movie function to the script. The initial MATLAB code solves a differential equation and
plots the solution. See figure 2.1 for the solution plot. However, the improved code allows the user
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Figure 2.1 Coupled springs diagram
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2.1 Trajectory movie 8

to view the motion on the curves of the plot. Now, first loop obtains the number of bounces from
the number of peaks in the figure. See first loop below.

for n = 1:max_number_bounces
max_number_bounces = 8;
[tbounce,wbounce] = ode45(@odefunc,[tstart,tstop],w0,options);

% This appends the solution for the nth bounce
% to the end of the full solution
n_steps = length(tbounce); % Extracts # of steps in new solution
% This appends the new times to end of the existing ones
times = [times;tbounce(1:n_steps)];
% This appends new solution to end of y
sols = [sols;wbounce(1:n_steps,:)];

% This sets the initial conditions for the next bounce
w0 = wbounce(n_steps,:); % Initial condition is sol at end of bounce
w0(4) = −w0(4); % But we change the direction of vertical velocity
tstart = tbounce(n_steps);

end

This loop runs eight times, obtains the necessary variables for each frame and saves them in a
matrice, sols. Then, the next loop plots the eight different solutions for the differential equations
obtained and saved in sols in the first loop. See second loop below.

A = sols(:,1);B = sols(:,2);
axis_length = [15 2];
for t=1:numel(A)

plot(A(t),B(t),'ro','MarkerSize',20,'MarkerFaceColor','b');
axis([0,axis_length(1),0,axis_length(2)]);
M(t) = getframe;

end

The second loop is exactly where the movie is created. The line M(t) = getframe captures the
frames and saves them to M(t), a function of time which displays the MATLABmovie when it is
called. The next script below is known as the testing script. It calls the function that displays the
movie. See script below.

%M = movie_pplot_vector_ode(V0,theta,c,max_number_bounces)
M = movie_pplot_vector_ode(10,45,0.1,8);
movie(M,2,3);
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Figure 2.2 Coupled springs plot

2.2 Coupled Springs
Springs are mechanical structures which possess vibrational ability. The behavior of springs can
be applied to other mechanical structures which is why understanding the behavior of springs is
important.
Problem Statement: Two equal masses m1 = m2 = m are attached to three springs, each having
the same spring constant k1 = k2 = k3 = k, where the two outside springs are attached to walls.
The masses slide in a straight line on a frictionless surface. The system is set in motion by holding
the left mass in its equilibrium position while at the same time pulling the right mass to the right
of its equilibrium a distance of d. Find the subsequent motion of the masses. This can be found in
Example 3 of page 378 in [4]. See figure 2.2 to visualize problem statement.

The goal of this exercise is to derive the solution of the differential equation and plot it. The
first step is to set up a system of differential equations. From the problem statement and figure 2.2,
we get that the system of equations is as follows:

m1ẍ1 =−k1x1 + k2(x2− x1),

m2ẍ2 =−k2(x2− x1)− k3x2,
(2.1)

with initial conditions:
x1(0) = 0, ẋ1(0) = 0,
x2(0) = 0, ẋ2(0) = 0.

Equation (2.1) is modeled by Newton’s second law of motion:

mẍ+ cẍ+ kx = 0, (2.2)

where m,c and k are the mass, damping and stiffness constant of problem. And x is the displace-
ment. However, for this problem there is no damping, so c = 0. Then, the equation is refined
as:

mẍ+ kx = 0. (2.3)

Now, solving for ẍ, the result is:

ẍ =− k
m

x. (2.4)
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Since there are two systems of equations in (2.1), the next step is to insert it in a matrix for sim-
plicity to obtain:

ẍ =
[

ẍ1
ẍ2

]
, M =

[
m1 0
0 m2

]
. (2.5)

Solving for ẍ in system of equations in (2.1):

ẍ1 =−
(k1 + k2)

m1
x1 +

k2

m1
x2,

ẍ2 =
k2

m2
x1−

(k2 + k3)

m2
x2

(2.6)

The K matrix can now be derived to be:

Kx =
[
−(k1 + k2) k2

k2 −(k2 + k3)

][
x1
x2

]
. (2.7)

The next step is to find ẍ. This is achieved by manipulating equations (2.5), to get:

ẍ =−M−1Kx =
[

m1 0
0 m2

]−1[−(k1 + k2) k2
k2 −(k2 + k3)

]
, (2.8)

which can be further simplified as:

ẍ =

[
− (k1+k2)

m1
0

0 − (k2+k3)
m2

][
ẍ1
ẍ2

]
. (2.9)

Since m1 = m2 = m and k1 = k2 = k3 = k, let us assume that k = m = 1 for simplicity. Below is
the code that computes the solution to the problem using the informtaion derived.

function xdot = spring3(t,x)
xdot = zeros(4,1); %Matrix for the equations
k1 = 1;
k2 = 1;
k3 = 1;
m1 = 1;
m2 = 1;
xdot(1) = x(2);
xdot(2) = −(k1/m1)*x(1)+(k2/m1)*(x(3)−x(1));
xdot(3) = x(4);
xdot(4) = −(k2/m2)*(x(3)−x(1))−(k3/m2)*x(3);

And this code is tested in the script below.

function test_spring3(time) % test with time=20

[t,x] = ode45('spring3',[0 time],[0;0;2;0]);
plot(t,x(:,1),t,x(:,3))
legend('xdot(1)','xdot(3)')
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Figure 2.3 Solution of coupled springs problem (x1,x2).

The plots generated by the scripts are the same as the ones provided in [4] which confirms that
figure 2.3 does in fact contain the correct plots.



Chapter 3

Frame Finite Element Method

The Finite Element Method is a powerful numerical method used in solving Engineering and
Physics problems. It is used in problems like structural analysis such as the problem proposed
in this chapter. The Finite Element Method works by dividing a problem (i.e frame in this case)
into smaller parts which are known as finite elements. These finite elements are then modeled with
differential equations individually and assembled together as a whole. We will be applying the
finite element method to the exercise problem below.
Exercise Problem: Find the natural frequencies of an L-shaped frame that is made of two beams
of length of 1m each. Both beams have cross-sections of 0.01m by 0.01m. The elastic modulus is
100GPa. The beam has mass density of 1000 kg

m3 . Use 10 elements. This problem is from [3].
For easy understanding, there will be an assumption that the frame is a 2-Dimensional object.

Since the frame is considered to have rotational, transverse and axial movement, the frame is said
to have 3 degrees of freedom (dof). These dof are represented as functions such that v(x),u(x), and
θ(x) are transverse deflection, axial deflection and rotational displacement respectively. Here, the
goal is to derive the mass and stiffness matrix in order to ultimately find the natural frequency of
the frame. This is achieved by implementing the finite element method on the frame structure.

The natural frequency of a structure is the distribution of it’s innate energy of which it oscillates
with. Knowing the natural frequency of a frame has many advantages, some of which are; it allows
for the derivation of the appropriate damping force needed by a structure to withstand vibrations
that maybe caused by earthquakes or other natural disasters. Therefore, due to such applications,
the final step of the solution to the problem statement is to derive the natural frequency of the L-
shaped frame. We achieve this using the eigenvalue analysis method because the frame has more
than one degree of freedom. Thus, in taking the eigenvalue of the equation of motion of the frame,
we obtain the following equation:

det[K−ω
2
n M] = 0, (3.1)

where K and M are the stiffness and mass matrices, respectively. And ω2
n is the natural frequency

of the frame with respect to the nth degree of freedom. Equation (3.1) will be further understood
in the next sections.

12



3.1 Stiffness Matrix 13

3.1 Stiffness Matrix
This section focuses on the derivation of the stiffness matrix on Newton’s second law of motion
model introduced above. It is already known that the frame has three nodal variables or dof, which
are the following functions: v(x),u(x), and θ(x) that represent the transverse deflection, axial
deflection and rotational displacement, respectively.

For simplicity, this section will begin by observing the finite element method for a frame with
two dof. The dof for this frame would be transverse and rotational deflection with functions: v(x)
and θ(x), respectively. Since every element has two nodes and each node has 2 dof, it implies that
each element has 4 dof. This means that to account for all these dof per element, the transverse
function would be a third degree polynomial expressed as:

v(x) = a0 +a1x+a2x2 +a3x3. (3.2)

Which is derived by the fourth integration of δ 4v
δx4 = 0, an equation of equilibrium for a beam

element in the unloaded region. Next, considering the rotation deflection, θ(x) which is a the slope
of the transverse deflection, θ = dv

dx , it can be further expressed as:

θ(x) = a1 +2a2x+3a3x2. (3.3)

To account for everything, the boundary equations for equations (3.2) and (3.3) are:

v(x) = v1, θ(x) = θ1,

v(L) = v2, θ(L) = θ2.
(3.4)

This is because the frame has a starting point, 0 and an end point, L for each node in an element.
Then, applying the boundary conditions on the equations, the result is:

v(0) : a0 = v1

θ(0) : a1 = θ1

v(l) : a0 +a1l +a2l2 +a3l3 = v2

θ(l) : a1 +2a2l2 +3a3l2 = θ2.

(3.5)

After Substituting equation (3.5) into (3.2), the following is obtained:

v(x) = v1 + xθ1−
3x2

L2 v1−
2x2

L
θ1 +

3x2

L2 v2−
x2

L
θ2 +

2x3

L3 v1 +
x3

L2 θ1−
2x3

L3 v2 +
x3

L2 θ2. (3.6)

However, after much simplification, the function is:(
1− 3x2

L2 +
2x3

L3

)
v1 +

(
x− 2x2

L
+

x3

L2

)
θ1 +

(
3x2

L2 −
2x3

L3

)
v2 +

(
x3

L2 −
x2

L

)
θ2. (3.7)

Finally, the transverse deflection function can then be further expressed as:

v(x) = H1(x)v1 +H2(x)θ1 +H3(x)v2 +H4(x)θ2, (3.8)
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where:

H1(x) = 1− 3x2

l2 +
2x3

l3 ,

H2(x) = x− 2x2

l
+

x3

l2 ,

H3(x) =
3x2

l2 −
2x3

l3 ,

H4(x) =
−x2

l
+

x3

l2 .

(3.9)

H(x) is known as Hermite shape functions. They are used to ensure that the deflection and slope
are continuous between elements. Since, these Hermite functions are clearly differentiable, it im-
plies that they are continuous and therefore also means that v(x) and θ(x) are continuous between
neighboring elements. These functions represents the 4 degrees-of-freedom for each element. Af-
ter, much derivations and calculations, it can be concluded that the formula for constructing an
element stiffness matrix according to the beam theory is:

[Ke] =
∫ l

0
[B]T EI[B] dx. (3.10)

where,
[B] = [H ′′1 H ′′2 H ′′3 H ′′4 ]. (3.11)

However, after deriving the Euler-Bernoulli Beam equation, the moment and shear force function,
are:

m(x) = EI
d2v(x)

dx2 ,

V (x) = EI
d3v(x)

dx3 ,

(3.12)

with boundary conditions:
V (0) = F1,y, m(0) = m1,

V (L) = F2,y, m(L) = m2
(3.13)

Now, applying the boundary equations in (3.13) to equations (3.12), the result is:

F1,y =V (0) =
EI
L3 (12v1 +6Lθ1−12v2 +6Lθ2),

m1 =−m(0) =
EI
L3 (6Lv1 +4L2

θ1−6Lv2 +2L2
θ2),

F2,y =−V (L) =
EI
L3 (−12v1−6Lθ1 +12v2−6Lθ2),

m2 = m(L) =
EI
L3 (6Lv1 +2L2

θ1−6Lv2 +4L2
θ2)

(3.14)
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Then, inserting these equations in (3.14) in a matrix for easy visualization, since there are 4 systems
of equation, the result is:

[Ke] =


F1,y
m1
F2,y
m2

=
EI
l3


12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2




v1
θ1
v2
θ2

 . (3.15)

Now that the mass and stiffness matrix for a 2 dof frame is known, the same formula can be applied
to find the mass and stiffness for a frame with 3 dof. This entails accounting for the axial deflection
for each node in an element. The axial stiffness matrix of a beam with a constant cross-sectional
area is:

kaxial =
AE
L

[
1 −1
−1 1

]
. (3.16)

kaxial is the appropriate axial stiffness matrix for the frame since it has a constant cross-sectional
area. Then, combining the axial stiffness matrix with the 2 dof frame matrix in equation (3.15),
the stiffness matrix for the L-shaped beam is:

[Ke] =
E
l3


Al2 0 0 −Al2 0 0
0 12l 6Il 0 −12l 6Il
0 6Il 4Il2 0 −6Il 2Il2

−Al2 0 0 Al2 0 0
0 −12Il −6Il 0 12I −6Il
0 6Il 2Il2 0 −6Il 4Il2





u1
v1
θ1
u2
v2
θ2


. (3.17)

Finally, to construct the gloabl matrix, the co-ordinate system for the element stiffness matrix is
changed and assembled together with overlapping to avoid repetition to create the 33 by 33 matrix.

3.2 Mass Matrix
Similar to the stiffness matrix, the mass matrix can be derived using a consistent mass matrix which
is as shown below.

[Me] =
∫ l

0
ρA[N]T [N] dx (3.18)

where N is the matrix of the appropriate shape functions. ρ is the mass density and A is the cross-
sectional area. This matrix is derived from the kinetic energy in the element which is simlar to how
stiffness is derived from the strain energy in the element. By using the consistent mass matrix both
translational (or linear) momentum and rotational momentum is conserved. Shown below is the
derivation of the mass matrix from it’s kinetic energy equation. Using the hermite shape functions

H = [H1 H2 H3 H4], (3.19)
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the consistent mass matrix shown in equation (3.20) for the 2 dof (v and θ ) can be evaluated. With
N = H, the mass matrix equation can be modified as follows:

Me =
∫ l

0
ρA[H]T [H] dx. (3.20)

After substiting the variables into the equation and calculating the mass matrix using the equation
above, the result is:

[Me] =


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

 . (3.21)

However, since the known axial mass matrix is:

Maxial =

[
140 70
70 140

]
, (3.22)

using the process of assembling the 2 dof mass matrix, Me with the axial displacement matrix,
Maxial , the mass matrix for the 3 dof frame is:

[Me] =
ρAl
420


140 0 0 70 0 0
0 156 22l 0 54 −13l
0 22l 4l2 0 13l −3l2

70 0 0 140 0 0
0 54 13l 0 156 −22l

 . (3.23)

The system matrix is constructed by changing the co-ordinate using the following matrix:

u1
v1
θ1
u2
v2
θ2


=


c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1





ū1
v̄1
θ̄1
ū2
v̄2
θ̄2


, (3.24)

where c = cos(φ) and s = sin(φ). Equation (3.24) can be further expessed as:

{de}= [T ]{d̄e}. (3.25)

Using [T e] to transform the co-ordinate and then overlapping the element mass matrices, the result
is a 33 by 33 matrix which is as a result of multiplying the degrees of freedom to the number of
nodes.
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3.3 Matlab code Analysis
This section focuses on the MATLAB code that implements all the information provided and ex-
plained in this chapter. Therefore, first, the important variables which is used all over the MATLAB

code is introduced.

nel=10; % number of elements
nnel=2; % number of nodes per element
ndof=3; % number of dofs per node
nnode=(nnel−1)*nel+1; % total number of nodes in system
sdof=nnode*ndof; % total system dofs

These variables are needed for the overall analysis of the mass and stiffness matrices. Next, derive
the co-ordinate values of the nodes in terms of the global axis, (x,y). After deriving these values
put it in 1 by 11 matrix which represents the 11 nodes. The code below performs these derivations
and calculation as follows:

% ga means global axis

x(1)=0; y(1)=0; % x, y coord. values of node 1 in terms of the ga
x(2)=0; y(2)=0.2; % x, y coord. values of node 2 in terms of the ga
x(3)=0; y(3)=0.4; % x, y coord. values of node 3 in terms of the ga
x(4)=0; y(4)=0.6; % x, y coord. values of node 4 in terms of the ga
x(5)=0; y(5)=0.8; % x, y coord. values of node 5 in terms of the ga
x(6)=0; y(6)=1; % x, y coord. values of node 6 in terms of the ga
x(7)=0.2; y(7)=1; % x, y coord. values of node 7 in terms of the ga
x(8)=0.4; y(8)=1; % x, y coord. values of node 8 in terms of the ga
x(9)=0.6; y(9)=1; % x, y coord. values of node 9 in terms of the ga
x(10)=0.8; y(10)=1; % x, y coord. values of node 10 in terms of the ga
x(11)=1; y(11)=1; % x, y coord. values of node 11 in terms of the ga

Next, define another set of variables that will be used throughout the derivation process. Below
is the code that contains these new variables. The variables are part of the formula needed in the
numerical calculation of the mass and stiffness matrices.

el=100*10^9; % elastic modulus (material property)
area=0.0001; % cross−sectional area
xi=8.3333*10^(−10); % moment of inertia of cross−section
rho=1000; % mass density per volume (material property)

Now, define the boundary conditions. There are 3 boundary conditions, one for each degree of
freedom. Below are the boundary conditions.

bcdof(1)=1; % transverse deflection at node 1 is constrained
bcdof(2)=2; % axial displacement at node 1 is constrained
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bcdof(3)=3; % slope at node 1 is constrained

Thus, all necessary variables for the calculation have been defined. Now for the calculations, below
the system stiffness and mass matrices are assembled.

kk=zeros(sdof,sdof); % initialization of system stiffness matrix
mm=zeros(sdof,sdof); % initialization of system mass matrix
index=zeros(nel*ndof,1); % initialization of index vector

The index variable intializes a 30 by 1 vector of zeros which serves as a place holder for the 6 dof
per element in the frame. Below is the code where most of the calculations are made.

for iel=1:nel % loop for the total number of elements

index=feeldof1(iel,nnel,ndof); % extract system dofs associated with element

node1=iel; % starting node number for element 'iel'
node2=iel+1; % ending node number for element 'iel'

x1=x(node1); y1=y(node1); % x and y coordinate values of 'node1'
x2=x(node2); y2=y(node2); % x and y coordinate values of 'node2'

leng=sqrt((x2−x1)^2+(y2−y1)^2); % length of element 'iel'

if (x2−x1)==0; % compute the angle between the local and global axes
beta=pi/2;
else
beta=atan((y2−y1)/(x2−x1));
end

[k,m]=feframe2(el,xi,leng,area,rho,beta,1); % compute element stiffness matrix

kk=feasmbl1(kk,k,index); % assemble element matrices into system matrix

mm=feasmbl1(mm,m,index); % assemble element mass matrices into system matrix

end

The goal of this loop is to obtain the 6 dof in an element of the system. This changes the index ma-
trix into a 1 by 6 matrix for each element in the system. Also, this matrix changes 10 times to repre-
sent each element of the system. It defines node1 and node2 for the two nodes in an element. Next,
it uses the position of node1 and node2 to determine the value of the rotational deflection function,
one of the degrees of freedom. After that, this line: [k,m] = f e f rame2(el,xi, leng,area,rho,beta,1)
uses the function f e f rame2 to derive the element stiffness and mass matrix. This function uses the
element matrices derived in sections 3.1 and 3.2 and substitutes the constant variables defined both
in the problem statement and the code. Then, the next function, f easmbl1 assembles the system
mass and stiffness matrix by taking in the previously defined system matrices, the element matrices
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and the index matrix. It is a loop that runs 6 times and assigns each index element to a diagonal
entry of the system matrix 6 times and then changes the element of the system matrix by adding it
to the diagonal value of the element matrix. Below I have added the f easmbl1 function for more
clarification of how the system matrix is built.

edof=nnel*ndof;

edof = length(index);
for i=1:edof

ii=index(i);
for j=1:edof

jj=index(j);
kk(ii,jj)=kk(ii,jj)+k(i,j);

end
end

end

Finally, below is the last piece of code needed to obtain the natural frequency of the frame.

[kn,mn]=feaplycs(kk,mm,bcdof); % apply the boundary conditions

fsol=eig(kn,mn); % solve the matrix equation and print
fsol=sqrt(fsol)

The first line applies the boundary condition on the system matrices, and then takes their eigen-
value. This is because to obtain the natural frequency of an object, the normal procedure to follow
is to use the eigenvalue analysis. And then, the last line takes the square root of the eigenvalue to
obtain the desired result which is the natural frequency of a frame.



Chapter 4

Mechanical Structure

This chapter focuses on the introduction of a mechanical structure which applies the finite element
method to it. The mechanical structure in question here is more complex than the ones discussed
in the previous chapters. The model used as the mechanical structure in this chapter is known as
FRAME. This FRAME model is a general purpose finite element and optimal structural control
program [3]. The model is used to generate the two dimensional frame finite element structure
model which is used for testing how a building behaves during an earthquake. See figure 4.1 for
frame model. It is a finite element discretization of a frame which subsitutes a building for the
purposes of this work. The next step is to derive the frame structure. Thus, to begin, first note
some important variables that are known based on the nature of the problem. This structure is a
typical six degrees of freedom frame using the finite element method. This means that the degrees

Figure 4.1 Frame Finite Element

20
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Figure 4.2 Frame Element Degrees of Freedom

of freedom are represented as the following functions:

x(i) =


ux(i)
uy(i)
θ(i)

 , f (i) =


fx(i)
fy(i)
m(i)

 , (4.1)

where x(i) is the displacement vector, f (i) is the force vector and i represents the nodal points.
And the boundary conditions are:

üx = ax, üy = ay, θ = 0,

where ax,ay are the earthquake ground accelerations in the horizontal, and vertical directions re-
spectively [3]. Since the magnitude of the horizontal, x motion is usually greater than the vertical,
y motion, they are known as:

a≡ {ax ay} ∼ {ax 0}. (4.2)

See figure 4.2 for degrees of freedom. Using the second law of motion to model the motion of the
structure, the result is:

Mẍ(t)+Cẋ(t)+Kx(t) = Bu(t)+E f (t) , (4.3)

where M,C,K are the mass, damping and stiffness matrices, respectively. x(t) is the displacement
vector and Bu(t)+E f (t) are the external variables acting on the Frame. These external variables
are; control force and excitation location matrix, respectively. For the purposes of the derivation,
let Bu+E f = F(t). Next, solve for x(t), the displacement of the structure which in turn helps us
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find the level and rate of vibrations of this structure. To do this, multiply the equation by M−1 to
get ẍ alone. Then, function becomes:

ẍ(t)+M−1Cẋ(t)+M−1Kx(t) = M−1F(t). (4.4)

Next, collect like terms and get:

ẍ(t) =−M−1Cẋ(t)−M−1Kx(t)+M−1F(t). (4.5)

Let A be the system matrix which implies Ax(t) =−M−1Cẋ(t)−M−1Kx(t). Then, the function is
modified as:

ẍ(t) = Ax(t)+F(t), (4.6)

which can be further simplified as:

ẍ(t) = Ax+Bu+Ea. (4.7)

Using the change of variables technique, let ẋ(t) = z(t) which implies; ẍ(t) = ż(t). Therefore, the
result is:

ż(t) = Az+Bu+Ea. (4.8)

Finally, A,B and E can be represented as:

z(t) =
[

x(t)
ẋ(t)

]
; A =

[
0 I

−M−1K −M−1C

]
(4.9)

B =

[
0

M−1β

]
; E =

[
0

M−1ε,

]
(4.10)

with inital conditions z(0) = 0.



Chapter 5

Derivation of the Mechanical Structure

This Chapter, discusses the math model derived in Chapter 4, how to derive the mass, stiffness and
damping matrix for this frame in figure 4.1. Using newton’s second law of motion as a model, the
motion of the frame can be expressed as:

Mẍ+Cẋ+Kx = Bu+E f ,

where M,C,K are the mass, damping and stiffness matrices, respectively. And Bu+E f are the
external variables acting on the Frame. Let F(t) = Bu+E f , so the result is:

Mẍ+Cẋ+Kx = F(t).

The goal in this chapter is to derive the matrices M,C, and K. From the figure 4.1, it can be
observed that the frame is more complex than the one discussed in Chapter 2. This frame is
made of beams, columns and truss members. Therefore, when applying the derivation techniques
acquired from chapter 2 in this chapter there will be a slight modification. Equation (4.1) shows
us the generalized form of the displacement and force vector as functions of the nodal points of
the frame. Let α and β be the nodal points such that the displacement and force vector can be
represented as:

x =



ux(α)

uy(α)

θ(α)

ux(β )

uy(β )

θ(β )


, f =



fx(α)

fy(α)

m(α)

fx(β )

fy(β )

m(β )


. (5.1)

Now, let k denote the element of the frame, such that M(k),K(k) and C(k) are the mass, stiffness
and damping matrix of the kth element of the frame, respectively. In chapter 2, matrices of a 2 dof
frame is defined first and then the 3 dof frame. The same process will be applied in this derivation.
However, since these two frames are different there matrices are very different since the frame
considered in this chapter is complex. This is further discussed in [7]. Now, let us condider the
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2 degrees of freedom matrix derived in chapter 2. Since, the frame is not common there will be
a focus on the Yang’s suggestion in [7] of a stiffness and mass matrix of an uncommon frame.
Therefore, after rigorous readings it is confirmed that the matrices in [3] are in fact the correct
matrices for the frame.

Thus, the mass matrix may be represented as:

M(k) =
ρAL
420


156s2 −156sc −22Ls 54s2 −54sc 13Ls
−156sc 156c2 22Lc −54sc 54c2 −13Lc
−22Ls 22Lc 4L2 −13Ls 13Lc −3L2

54s2 −54sc −13Ls 156s2 −156sc 22Ls
−54sc 54c2 13Lc −156sc 156c2 −22Lc
13Ls −13Lc −3L2 22Ls −22Lc 4L2

 , (5.2)

and the stiffness matrix:

K(k) =
EI
L


12s2/L2 −12sc/L2 −6s/L −12s2/L2 12sc/L2 −6s/L
−12sc/L2 12c2/L2 6c/L 12sc/L2 −12c2/L2 6c/L
−6s/L 6c/L 4 6c/L −6c/L 2
−12s2/L2 12sc/L2 6s/L 12s2/L2 −12sc/L2 6s/L
12sc/L2 −12c2/L2 −6c/L −12sc/L2 12c2/L2 −6c/L
−6s/L 6c/L 2 6s/L −6c/L 4

 , (5.3)

Next, derive the damping matrix and obtain:

C(k) =
vI
L


12s2/L2 −12sc/L2 −6s/L −12s2/L2 12sc/L2 −6s/L
−12sc/L2 12c2/L2 6c/L 12sc/L2 −12c2/L2 6c/L
−6s/L 6c/L 4 6c/L −6c/L 2
−12s2/L2 12sc/L2 6s/L 12s2/L2 −12sc/L2 6s/L
12sc/L2 −12c2/L2 −6c/L −12sc/L2 12c2/L2 −6c/L
−6s/L 6c/L 2 6s/L −6c/L 4

 , (5.4)

where c = cosφ , and s = sinφ . Moving the beams in the frame requires a change of coordinate
which is why c and s are in the matrices. For instance rotating the frame will cause a sinuosidal
motion which these change of coordinates accounts for.



Chapter 6

Numerical Simulation of the Mechanical
Structure

This chapter will discuss the MATLAB script that integrates all the discussions from the previous
chapters. However, it mostly focuses on integrating chapters 4 and 5. It uses the derived mass,
stiffness, damping matrices and other variables to create a MATLAB movie that captures the motion
of the frame’s vibrations. Below is an introduction to some of the variables in the script.

coeffs = 'test';
% coeffs = 'paper'; % vibration invisible

switch (coeffs)
case 'paper'

E = 205463.82; % MPa
A = 75483.72; % mm^2
I = 25e8; % mm^4
rho = 1; %lb/in^3
nu = 500; %psi−sec

case 'test'
E = 200; %205463.82; % MPa
A = 1; %75483.72; % mm^2
I = 1; %25e8; % mm^4
rho = 1; %lb/in^3
nu = 1; %500; %psi−sec

end

EA = E*A;
EI = E*I;
rhoA = rho*A;
nuI = nu*I;
nuA = nu*A;

We use the first case because the vibration can be seen. The second case vibrates at a rate that is
close to invisible to the human eyes so the the first case is used. Next, discretization of the frame
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is presented.

%Generation of coordinates and connectivities
numberElements = 20;
nodeCoordinates = [ 0 16 32 0 16 32 0 16 32 0 16 32 0 16 32; ...

0 0 0 12 12 12 24 24 24 36 36 36 48 48 48; ...
zeros(1,15) ];

dofCoordinates = nodeCoordinates'; dofCoordinates = dofCoordinates(:);

elementNodes = [ 1 4;
2 5;
3 6;
4 5;
5 6;
4 7;
5 8;
6 9;
7 8;
8 9;
7 10;
8 11;
9 12;

10 11;
11 12;
10 13;
11 14;
12 15;
13 14;
14 15];

prescribedDof = [1 2 3 16 17 18 31 32 33]';
numberNodes = size(nodeCoordinates,2);
xx = nodeCoordinates(1,:);
yy = nodeCoordinates(2,:);

ndof = 3*numberNodes;

Now, the script below shows a set up of the stiffness matrix and the assembly of its global matrix.

% Stiffness Matrix
stiffness = zeros(ndof,ndof);
% computation of the system stiffness matrix
for e = 1:numberElements

% elementDof: element degrees of freedom (Dof)
indice = elementNodes(e,:);
elementDof = [ indice indice+numberNodes indice+2*numberNodes] ;
nn = length(indice);
xa = xx(indice(2))−xx(indice(1));
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ya = yy(indice(2))−yy(indice(1));
length_element = sqrt(xa*xa+ya*ya);
cosa = xa/length_element;
sena = ya/length_element;
ll = length_element;
L = [ cosa*eye(2) sena*eye(2) zeros(2);

−sena*eye(2) cosa*eye(2) zeros(2);
zeros(2,4) eye(2) ];

oneu = [ 1 −1;−1 1 ];
oneu2 = [ 1 −1;1 −1 ];
oneu3 = [ 1 1;−1 −1 ];
oneu4 = [ 4 2;2 4 ];
k1 = [ EA/ll*oneu zeros(2,4);

zeros(2) 12*EI/ll^3*oneu 6*EI/ll^2*oneu3;
zeros(2) 6*EI/ll^2*oneu2 EI/ll*oneu4 ];

stiffness(elementDof,elementDof) = ...
stiffness(elementDof,elementDof)+L'*k1*L;

end

This loop runs from 1 to 20, assembling the stiffness matrix by element. The indice variable
obtains the nodes for each element in the frame. Then these nodes are inserted into elementDo f ,
the matrix for the dofs per element. Since, there are 3 dofs per element, it assembles a 1 by 6
matrix. Next it finds the distance between each node and uses it to find the angles, cosa and sena.
Then, these angles are used find the L matrix, which is used to change the co-ordinate system of the
stiffness matrix for the assembly of the global stiffness matrix. We define the axial displacement
matrix, and hence assemble both the element and global stiffness matrix.
Next, assemble the mass and damping matrix. Note, that these matrices are assembled as the
stiffness matrix. See code below.

% Mass Matrix
massmtrx = zeros(ndof);
for e = 1:numberElements

indice = elementNodes(e,:);
elementDof = [ indice indice+numberNodes indice+2*numberNodes] ;
nn = length(indice);
xa = xx(indice(2))−xx(indice(1));
ya = yy(indice(2))−yy(indice(1));
length_element = sqrt(xa*xa+ya*ya);
cosa = xa/length_element;
sina = ya/length_element;
ll = length_element;
oneu = [ 156 54;54 156 ];
oneu2 = [ −22 13;−13 22 ];
oneu3 = [ −22 −13;13 22 ];
oneu4 = [ 4 −3;−3 4 ];
oneu5 = [ 2 1;1 2 ];
M = rhoA*ll/420*[oneu*sina^2 −oneu*sina*cosa oneu2*ll*sina;

−oneu*sina*cosa oneu*cosa^2 −oneu2*ll*cosa;
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oneu3*ll*sina −oneu3*ll*cosa oneu4*ll^2] + ...
rhoA*ll/6*[oneu5*cosa^2 oneu5*sina*cosa zeros(2,2);
oneu5*sina*cosa oneu5*sina^2 zeros(2,2);
zeros(2,6) ];

massmtrx(elementDof,elementDof) = massmtrx(elementDof,elementDof) + M;
end

% Damping
damping = zeros(ndof);
for e = 1:numberElements

indice = elementNodes(e,:);
elementDof = [ indice indice+numberNodes indice+2*numberNodes ];
nn = length(indice);
xa = xx(indice(2))−xx(indice(1));
ya = yy(indice(2))−yy(indice(1));
length_element = sqrt(xa*xa+ya*ya);
cosa = xa/length_element;
sina = ya/length_element;
ll = length_element;
oneu = [ 1 −1;−1 1 ];
oneu2 = [ −1 −1;1 1 ];
oneu3 = [ −1 1;−1 1 ];
oneu4 = [ 4 2;2 4 ];
C = nuI/ll*[oneu*12*cosa^2/ll^2 −oneu*sina*cosa/ll^2 oneu2*6*sina/ll;

−oneu*12*sina*cosa/ll^2 oneu*12*cosa^2/ll^2 −oneu2*6*cosa/ll;
oneu3*6*sina/ll −oneu3*6*cosa/ll oneu4]+...
nuA/ll*[oneu*cosa^2 oneu*sina*cosa zeros(2,2);
oneu*sina*cosa oneu*sina^2 zeros(2,2);
zeros(2,6) ];

damping(elementDof,elementDof) = damping(elementDof,elementDof) + C;
end

Now, that all the matrices are defined, the next step is to set it up in the equation model and solve
for x in the equation of motion. However, in the model used, x is Z for this frame, so script below
solves for Z.

activeDof = setdiff(transpose([1:ndof]),[prescribedDof]);
lethActDof = length(activeDof);
SM = stiffness(activeDof,activeDof);
MM = massmtrx(activeDof,activeDof);
DM = damping(activeDof,activeDof);
epsilon = ones(lethActDof,1);
EE = 0.1*[zeros(lethActDof,1);MM\epsilon];
sss = length(activeDof);
sss3 = sss/3;
factZ = [zeros(sss,sss) eye(sss,sss);−MM\SM −MM\DM];
[T,Z] = solve_vibration(factZ,EE,sss3);
positions = zeros(length(T),ndof);
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for t = 1:length(T)
positions(t,prescribedDof) = dofCoordinates(prescribedDof);
for i = 1:length(activeDof)

positions(t,activeDof(i)) = dofCoordinates(activeDof(i)) + Z(t,i);
end

end

The next piece of code achieves the ultimate goal of creating the movie to display the frame and
visualize it’s vibrations. See below.

vidObj = VideoWriter('peaks.avi');
open(vidObj);

figure
t1 = 1;
t2 = length(T(:,1));
dt = 32;
for tt = t1:dt:t2

plot(positions(tt,1:numberNodes)',
positions(tt,numberNodes+1:2*numberNodes)',
'ro');

axis([−10,40,−15,65]);

% Write each frame to the file.
currFrame = getframe;
writeVideo(vidObj,currFrame);

end

% Close the file.
close(vidObj);

return % end of function

This is where the magic happens. It is at this place that the movie is created and all the plots are
captured for the length of time the loop iterates. This captured are then played which causes a
moving picture, the MATLAB movie. The movie is saved as an avi file called peaks.



Chapter 7

Stochastic Vibrations of Mechanical
Structures

This chapter investigates the vibrations of a specific nodal point, 14. To test for an interesting be-
havior in node 14 (center of the roof) of figure 4.1, monte carlo’s formula was adopted for the ran-
dom premutation of vibrations. Monte carlo simulation is an approximation technique that involves
the generation of random variables from a sample to model the unpredictability of known results
like earthquake vibrations. This is useful because earthquake excititations are not unknown until
after the fact and this calculation simulates the unpredictable behavior of earthquake excititations.
We implemented the model in MATLAB and used ode45 solver. Due to adaptive time-stepping, for
Monte Carlo simulation we interpolated the results in post-processing to constant time intervals.

Therefore, to achieve this, we considered 10% variability of the Young’s modulus E, and used
Monte Carlo simulation with 104 samples. Specifically, we randomly sampled E from a uniform
distribution in the range 190−210psi, and we simulated the motion of the planar structure in the
time interval [0,600]s. The horizontal displacement of node 14 is shown in figure 7.1. The mean
displacement is given by the periodic forcing, and we see that the width of the band given by
standard deviation of the displacement increases with time.
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Figure 7.1 Permutation of the horizontal displacement of node14



Chapter 8

Conclusion and Future work

We learned the basics of finite elements and MATLAB programming. Based on our knowledge of
elementary differential equations and numerical analysis, we derived and implemented models of
vibrations for several mechanical structures. Finally, we also applied our codes in Monte Carlo
simulation.

The future research will focus on implementation of active structural control and use of real-
istic earthquake data for forcing. The goal is to test design, reliability and efficiency of possible
structural control mechanisms, both under certainty and uncertainty.
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